Aza-Michael addition of acrylonitrile with 2-aryloxymethylbenzimidazole derivatives under microwave irradiation

Tai-Bao Wei, Mao-Tang Hua, Hai-Xiong Shi, Yong Liu and You-Ming Zhang*

College of Chemistry and Chemical Engineering, Key Laboratory of Polymer Materials of Gansu Province, Northwest Normal University, Anning East Road No. 967, Lanzhou, Gansu, 730070, P. R. China

A simple, rapid, and highly efficient method has been developed for the aza-Michael addition of acrylonitrile to 2-aryl-oxymethylbenzimidazole derivatives in the presence of anhydrous potassium carbonate under microwave irradiation. A series novel of 1-cyanoethyl-2-aryloxymethylbenzimidazole derivatives have been prepared and characterised by ¹H NMR, ¹³C NMR, IR spectra and elemental analysis.

Keywords: Aza-Michael reaction, cyanoethylation, benzimidazoles, microwave irradiation

Benzimidazoles derivatives have been examined as antibacterial,¹ anticancer,^{2,3} and antiulcer agents.^{4,5} Organonitriles are useful intermediates in the construction of C–N bonds and in the preparation of β amino carbonyl or nitrile compounds by the aza-Michael addition. However, reports on the cyanoethylation of substituted benzimidazole derivatives with α , β -unsaturated nitriles are rare.

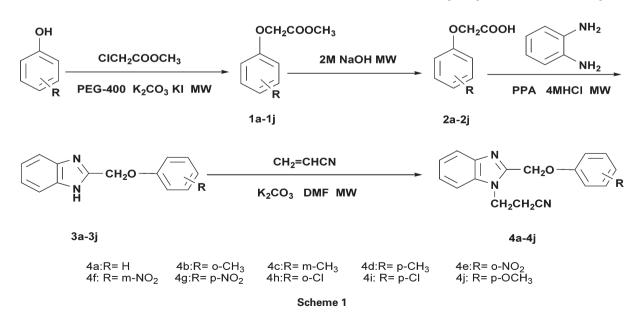
The aza-Michael addition is an important carbon–nitrogen bond-forming reaction which has been explored in organic synthesis. There are some reports on the base-catalysed aza-Michael addition of heterocyclic compounds^{6–7}, but they have some disadvantages due to the long reaction time (several days), vigorous reaction conditions and tedious workup.

In recent years, microwave technology has become a wellestablished procedure in organic synthesis which can increase the purity of the products, enhance the chemical yield, and shorten the reaction time.^{8,9} In continuation of our earlier work on the synthesis and study of the biological activity of benzimidazole derivatives,^{10,11} we synthesised a series of new compounds containing the 2-aryloxymethylbenzimidazole and acrylonitrile groups using microwave irradiation. The reactions are shown in the Scheme 1.

Results and discussion

In order to select the best reaction condition for synthesis **4a–j**, we carried out a series of experiments as following: firstly, we examined as a model reaction the preparation of compound **4a** using different catalysts. The results are shown in Table 1.

We found that the yields of 4a were 84% in the presence of anhydrous potassium carbonate. This was the most efficient catalyst for this reaction.


Secondly, organic solvents strongly affected the aza-Michael addition. In order to improve the activity of K_2CO_3 , some conventional organic solvents were screened in Table 2. The yields of **4a** were more than 80% in highly polar aprotic solvents. DMF was the appropriate solvent for this reaction.

Finally, to investigate the effect of microwave irradiation on this reaction, we compared it with the classical method.⁷ It required 8 hours to prepare **4a** by the classic method, while only 3 minutes of microwave activation was required for the synthesis of **4a**. Obviously, the latter method considerably reduced the reaction time. This method was used in the preparation of other products. The results are listed in Table 3.

In conclusion, we have developed a facile, clean, efficient procedure for the preparation of a series of novel 1-cyanoethyl-2-aryloxymethylbenzimidazole derivatives in the presence of anhydrous potassium carbonate under microwave irradiation. In comparison with other conditions for the reaction, this methodology has led to a great improvement in shortening the reaction time, affording high yields and simplifying the work-up.

Experimental

Melting points were determined on the X-4 micro melting point apparatus and are uncorrected. IR spectra were recorded using KBr disc on TFS-3000 spectrophotometer and ¹H NMR spectra on a

* Correspondent. E-mail: zhangnwnu@126.com

Table 1 Yields of 4a in different catalysts in DMF

Entry	Solvents	Yields of 4a / %	
1	K ₂ CO ₃	84	
2	Na ₂ CO ₃	77	
3	NaOH	52	
4	КОН	61	
5	Na₃PO₄	68	

Table 2 Yields of 4a in different solvents using	$K_2 C O_3$
---	-------------

Entry	Solvents	Yields of 4a / %	
1	DMF (10 mL)	84	
2	DMSO (10 mL)	81	
3	Acetone (10 mL)	78	
4	Ethyl acetate (10 mL)	60	
5	Ethanol (10 mL)	48	
6	H ₂ O (10 mL)	15	

Table 3 Reaction times, melting points and yields of the products 4a-j in DMF

Entry	R	Timeª / min		M.p. / °C	Yield ^c / %
		230W	400W		
4a	R= H	1	2	148–149	84
4b	R= <i>o</i> -CH₃	1	2.5	141–143	89
4c	$R=m-CH_3$	1	2.5	128–129	82
4d	$R = p - CH_3$	1	2.5	138–139	89
4e	$R = o - NO_2$	1.5 [⊾]	0.3 ^b	181–183	81
4f	$R=m-NO_2$	1.5 [⊾]	0.3 ^b	149–151	80
4g	$R = p - NO_2$	1.5 [⊾]	0.3 ^b	195–196	87
4ĥ	R=o-Cl	1.5	2	187–189	91
4i	R=p-CI	1.5	2	118–119	93
4j	$R = p - OCH_3$	1	3	149–150	85

^aReactions were carried out with pulse of 30s (1min cooling time).

^bReactions were carried out with pulse of 20s (1min cooling time).

°lsolated yield from three runs.

Varian Mercury plus-400 MHz instrument using TMS as the internal reference. Elemental analyses were determined on PE-2400 CHN instrument. The reactions were monitored by TLC. For the microwave irradiation experiments described below, a conventional microwave oven was equipped with a condenser-Allihn type (Whirlpool Micro V-100 having maximum output of 850 W).

All the compounds 3a–j had been reported previously¹¹ by ¹H NMR, ¹³C NMR, IR spectra and elemental analysis.

Aza-Michael reaction of acrylonitrile with 4a; general procedure

It should be noted that the conventional domestic microwave oven was modified by equipping it with a condenser-Allihn type in order to improve the reproducibility.

To a 50 mL round bottom flask was successively added **3a** (5 mmol), anhydrous potassium carbonate (5 mmol), DMF (10 mL) and acrylonitrile (5 mmol) and thoroughly mixed properly. The flask was placed into a microwave oven, and the mixture was irradiated at 230 W and 400 W for the appropriate time. (The progress of the reaction was monitored by TLC). After irradiation, ice-cold water (10 mL) was added, and the product obtained was filtered, washed with H_2O (15 mL) three times, and dried. The product was crystallised from DMF–EtOH– H_2O .

l-cyanoethyl-2-aryloxymethylbenzimidazole (**4a**): Yellow crystals; yield; 84%; m.p. 148–149 °C ; IR (K Br) *v*: 2246 (C≡N), 1594 (C=N, C=C) cm⁻¹.¹H NMR (DMSO- d_6 , 400 MHz) δ 3.11 (2H, t, *J* = 6.4Hz, CH₂C≡N), 4.69 (2H, t, *J* = 6.8Hz, NCH₂), 5.47 (2H, s, CH₂O), 6.98–7.77 (9H, m, ArH); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 18.18, 39.50, 62.44, 110.85, 114.80, 118.59,119.48, 121.41, 122.23, 123.05, 129.60, 134.97, 141.83, 149.36, 157.64; Anal. Calcd for C₁₇H₁₅N₃O: C, 73.63, H, 5.45; N, 15.15. Found: C, 73.62; H, 5.47; N, 15.16%.

I-Cyanoethyl-2-o-methyl-aryloxymethylbenzimidazole (**4b**): Yellow crystals; yield; 89%; m.p. 141–143 °C; IR (KBr) v: 2249 (C=N), 1599 (C=N,C=C) cm⁻¹.¹H NMR (DMSO- d_6 , 400 MHz) δ2.19 (3H, s, CH₃), 3.10 (2H, t, J = 6.8Hz, CH₂C=N), 4.73 (2H, t, J = 6.8Hz, NCH₂), 5.48 (2H, s, CH₂O), 6.89–7.78 (8H, m, ArH); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 18.25, 39.50, 62.64, 109.31, 110.89, 111.91, 118.57, 119.54, 121.09, 122.26, 123.08, 125.85, 127.03, 130.70, 134.98, 141.90, 149.45, 155.83; Anal. Calcd for C₁₈H₁₇N₃O: C, 74.20; H, 5.88; N, 14.42. Found: C, 74.21; H, 5.61; N, 14.40%.

I-*Cyanoethyl*-2-*m*-methyl-aryloxymethylbenzimidazole (**4c**): Yellowish crystals; yield; 82%; m.p. 128–129 °C; IR (KBr) v: 2247 (C=N), 1612 (C=N, C=C) cm^{-1.1}H NMR (DMSO-d₆, 400 MHz) δ2.29 (3H, s, CH₃), 3.10 (2H, t, J = 6.8Hz, CH₂C=N), 4.65 (2H, t, J = 6.8Hz, NCH₂), 5.44 (2H, s, CH₂O),6.81-7.77 (8H, m, ArH); ¹³C NMR (DMSO-d₆, 100 MHz) δ 18.21, 21.12, 39.50,62.43, 110.86, 111.74, 115.46, 118.63, 119.50, 122.18, 122.23, 123.05, 129.35, 134.39,139.17, 141.85, 149.42, 157.68; Anal. Calcd for C₁₈H₁₇N₃O: C, 74.20; H, 5.88; N, 14.42. Found: C, 74.21; H, 5.87; N, 14.41%.

l-*Cyanoethyl*-2-*p*-methyl-aryloxymethylbenzimidazole (**4d**): Yellowish solids; yield; 89%; m.p. 138–139 °C; IR (KBr) v: 2249 (C=N), 1613 (C=N, C=C) cm^{-1.1}H NMR (DMSO-d₆, 400 MHz) δ2.23 (3H, s, CH₃), 3.10 (2H, t, J = 6.4Hz, CH₂C=N), 4.67 (2H, t, J = 6.8Hz, NCH₂), 5.42 (2H, s, CH₂O),7.02–7.76 (8H, m, ArH); ¹³C NMR (DMSO-d₆, 100 MHz) δ 18.16, 20.07, 62.58,110.82, 114.67, 118.58, 119.46, 122.20, 123.02, 129.91, 130.20, 134.97, 141.83,149.47, 155.54; Anal. Calcd for C₁₈H₁₇N₃O: C, 74.20; H, 5.88; N, 14.42. Found: C, 74.22; H, 5.90; N, 14.40%.

I-*Cyanoethyl*-2-*o*-*nitryl*-*aryloxymethylbenzimidazole* (**4e**): Yellowish crystals; yield; 81%; m.p. 181–183 °C; IR (KBr) v: 2253 (C≡N), 1608 (C=N, C=C) cm^{-1.1}H NMR (DMSO-d₆, 400 MHz) δ3.11 (2H, t, *J* = 6.8Hz, CH₂C≡N), 4.75 (2H, t, *J* = 6.8Hz, NCH₂), 5.70 (2H, s, CH₂O), 7.17–7.95 (8H, m, ArH); ¹³C NMR (DMSO-d₆, 100 MHz) δ 18.07, 63.54, 111.05, 115.63, 118.54,119.63, 121.42, 122.41, 123.33, 125.21, 134.56, 135.01, 139.49, 141.78, 148.18,150.35; Anal. Calcd forC₁₇H₁₄N₄O₃: C, 63.35; H, 4.38; N, 17.38. Found: C, 63.38; H, 4.36; N, 17.41%.

I-*Cyanoethyl*-2-*m*-nitryl-aryloxymethylbenzimidazole (**4f**): Yellowish solids; yield; 80%; m.p. 149–151 °C; IR (KBr) v: 2249 (C≡N), 1616 (C=N, C=C) cm^{-1.1}H NMR (DMSO-d₆, 400 MHz) δ3.13 (2H, t, *J* = 6.8Hz, CH₂C≡N), 4.71 (2H, t, *J* = 6.8Hz, NCH₂), 5.64 (2H, s, CH₂O), 7.25 – 8.02 (8H, m, ArH); ¹³C NMR (DMSO-d₆, 100 MHz) δ18.24, 62.98, 109.48, 110.96, 116.29, 116.40, 118.63, 119.57, 122.26, 123.20, 130.74, 134.94, 141.86, 148.65, 148.70, 158.23; Anal. Calcd for C₁₇H₁₄N₄O₃: C, 63.35; H, 4.38; N, 17.38. Found: C, 63.34; H, 4.42; N, 17.36%.

I-*Cyanoethyl*-2-*p*-*nitryl*-*aryloxymethylbenzimidazole* (**4g**): Yellow crystals; yield; 87%; m.p. 195–196 °C; IR (KBr) v: 2248 (C≡N), 1592 (C=N, C=C) cm^{-1.1}H NMR (DMSO-d₆, 400 MHz) δ3.18 (2H, t, *J* = 6.8Hz, CH₂C≡N), 4.70 (2H, t, *J* = 6.4Hz, NCH₂), 5.67 (2H, s, CH₂O), 7.20 – 8.30 (8H, m, ArH); ¹³C NMR (DMSO-d₆, 100 MHz) δ 18.23, 63.08, 110.98, 115.42, 115.53,118.61, 119.59, 122.38, 123.24, 125.85, 125.91, 134.94, 141.44, 141.86, 148.47,162.89; Anal. Calcd forC₁₇H₁₄N₄O₃: C, 63.35; H, 4.38; N, 17.38. Found: C, 63.36; H, 4.37; N, 17.37%.

l-*Cyanoethyl*-2-*o*-*chloro-aryloxymethylbenzimidazole* (**4h**): Yellow crystals; yield; 91%; m.p. 187–189 °C; IR (KBr) v: 2249 (C=N), 1616 (C=N, C=C) cm^{-1.1}H NMR (DMSO-d₆, 400 MHz) δ 3.15 (2H, t, *J* = 6.8Hz, CH₂C=N), 4.76 (2H, t, *J* = 6.8Hz, NCH₂), 5.59 (2H, s, CH₂O), 7.01–7.80 (8H, m, ArH); ¹³C NMR (DMSO-d₆, 100 MHz) δ 18.28, 63.28, 110.95, 114.51, 118.53,119.58, 121.30, 122.34, 122.41, 123.22, 128.38, 130.10, 135.04, 141.78, 148.67,152.91; Anal. Calcd foC₁₇H₁₄ClN₃O: C, 65.49; H, 4.53; N, 13.48. Found: C, 65.47; H, 4.55; N, 13.46%.

I-*Cyanoethyl*-2-*p*-*chloro-aryloxymethylbenzimidazole* (**4i**): White solids; yield; 93%; m.p. 118–119 °C; IR (KBr) v: 2249 (C≡N), 1595 (C= N, C= C) cm^{-1.1}H NMR (DMSO-d₆, 400 MHz) δ3.12 (2H, t, *J* = 6.4Hz, CH₂C≡N), 4.69 (2H, t, *J* = 6.8Hz, NCH₂), 5.50 (2H, s, CH₂O), 7.18–7.82 (8H, m, ArH); ¹³C NMR (DMSO-d₆, 100 MHz) δ 18.22, 62.77, 110.89, 116.66, 118.61,119.53, 122.29, 123.12, 125.20, 129.34, 134.96, 141.84, 149.06, 156.53; Anal. Calcd for: C₁₇H₁₄CIN₃O: C, 65.49; H, 4.53; N, 13.48. Found: C, 65.51; H, 4.51; N, 13.50%.

454 JOURNAL OF CHEMICAL RESEARCH 2010

1-cyanoethyl-2-p-methoxyl-aryloxymethylbenzimidazole (**4j**): White solids; yield; 93%; m.p. 118–119 °C; IR (KBr) v: 2248 (C=N), 1591 (C=N, C=C) cm⁻¹. ¹H NMR (DMSO-d₆, 400 MHz) δ 3.10 (2H, t, J = 6.8Hz, CH₂C=N), 3.70 (3H, s, OCH₃), 4.68 (2H, t, J = 6.8Hz, NCH₂), 5.40 (2H, s, CH₂O), 6.89–7.77 (8H, m, ArH); ¹³C NMR (DMSO-d₆, 100 MHz) δ 18.18, 55.37, 63.09,110.84, 114.67, 115.85, 118.63, 119.47, 122.21, 123.03, 134.97, 141.82, 149.55,151.60, 153.60; Anal. Calcd for C₁₈H₁₇N₃O₂: C, 70.34; H, 5.58; N, 13.67. Found: C, 70.14; H, 5.61; N, 13.66%.

This work was supported by the NSFC (No. 20671077) and the Natural Science Foundation of Gansu (2008-1-164) which is gratefully acknowledged.

Received 20 May 2010; accepted 9 July 2010

Paper 1000144 doi: 10.3184/030823410X12798039968476 Published online: 30 August 2010

References

- S. Ozden, H. Karatas, S. Yildiz and K. Goker, Arch. Pharm., 2004, 337, 556.
- 2 J. Easmon, G. Puerstinger, T. Roth, H. H. Fiebig, M. Jenny, W. Jaeger, G. Heinisch and J. Hofmann, *Int. J. Cancer*, 2001, 94, 89.
- 3 X. K. Zhu, J. Guan, Y. Tachibana, K. F. Bastow, S. J. Cho, H. H. Cheng, Y. C. Cheng, M. Gurwith and K. H. Lee, *J. Med. Chem.*, 1999, **42**, 2441.
- 4 R.M. Shafik, S.A. El-Din, N. H. Eshba, S.A. El-Hawash, M. A. Desheesh, A. S Abdel-Aty and H. M. Ashour, *Pharmazie*, 2004, **59**, 899.
- 5 Sh. I. El-Naem, A.O. El-Nzhawy, H. I. El-Diwani and A. O. Abdel Hamid, Arch. Pharm., 2003, 336, 7.
- 6 R. M. Martin-Aranda, E. Ortega-Cantero, M. L.Rojas-Cervantes, M. A. Vicente-Rodriguez and M. A. Banares-Munoz, *Catal. Lett.*, 2002, 84, 201.
- 7. L.Yang, L.W.Xu and C.G.Xia, Tetrahedron Lett., 2005, 46, 3279–3282.
- Q. Lin, Y.M. Zhang, T.B. Wei, and H. Wang, *J. Chem. Res.*, 2004, 28, 298.
 V. Polshettiwar and R.S. Varma *Tetrahedron* 2010, 66, 1091.
- T.B. Wei, H. Liu, M.L. Li and Y.M. Zhang, *Synth.Commun.*, 2005, 35, 1759.
- 11 Y.M. Zhang, W.H. Cui and T.B. Wei, Chinese J. Org. Chem., 2007, 7, 893.